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ABSTRACT We present the complete genome sequences of four phages that infect
Paenibacillus larvae, the causative agent of American foulbrood disease in honey-
bees. The phages were isolated from beehives and beeswax products from Las
Vegas, Nevada. The genomes are 50 to 55 kbp long and use the “direct terminal re-
peats” DNA-packaging strategy.

American foulbrood, currently the most destructive bacterial disease affecting the
honeybee, Apis mellifera, is caused by the Gram-positive bacterium Paenibacillus

larvae (1). There is growing interest in phages that infect and lyse P. larvae, as antibiotic
resistance is now widespread (2). There are currently 26 complete P. larvae phage
genome sequences in the literature and more in the process of being published (3–8).
Here, we present the complete genome sequences of phages Halcyone and Heath,
isolated from soil underneath healthy hives in Gilcrease Orchards in North Las Vegas,
Nevada; phage Unity, isolated from material inside a beehive at the University of
Nevada Las Vegas (UNLV); and phage Scottie, isolated from commercial hand cream
(Burt’s Bees) purchased in the Las Vegas area.

The phages were amplified using P. larvae NRRL 2605, an ERIC I genotype strain, and
plated on modified brain heart infusion agar with soft agar. Phage DNA was purified
with phenol-chloroform extraction at the University of Nevada Las Vegas (UNLV) and
sequenced at Brigham Young University with Illumina HiSeq 2500 sequencing with
250-bp paired-end reads. The genome sequences were assembled with Geneious v.
10.2.2 (Biomatters, Auckland, New Zealand) with medium-low sensitivity/fast and man-
ually annotated using DNA Master (9) by students in the course BIOL 209X Phage
Discovery at UNLV.

Each phage’s GenBank accession number, isolation source, and assembly results are
shown in Table 1. All 4 phages are in the family Siphoviridae with linear double-stranded
DNA (dsDNA) genomes and use the “direct terminal repeats” (DTR) DNA-packaging
strategy (10, 11). The DTR sequence of each phage was identified using Pile-up Analysis
Using Starts & Ends (PAUSE) (https://cpt.tamu.edu/computer-resources/pause/) and
Geneious, looking for a sharply delimited region with double coverage depth (11).
Halcyone, Heath, and Scottie have identical DTR sequences 377 bp long, whereas Unity
has a different DTR sequence 378 bp long. The genomes were oriented by setting the
first base of the DTR sequence to be the first base of the genome.

The genomes for Halcyone, Heath, and Scottie are 55 kbp long, which is at the
maximum of the range of the P. larvae phage genome length (3–8), and the genome
of Unity is 50 kbp long. A multiple alignment of genome sequences with ClustalW
shows that Halcyone and Heath are very closely related to each other, while Scottie is
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a little more distant and Unity is more distant still; the difference is largely due to a
5-kbp region missing in Unity but present in the other three phages. All four phages
encode a large terminase, a portal protein, a major tail protein, two tail assembly
proteins, a tail tape measure protein, and an N-acetylmuramoyl-L-alanine amidase. The
tail assembly proteins appear to have a predicted translational frameshift similar to
those of the G and G-T genes in phage Lambda (12, 13), located in the 3= region of the
upstream tail assembly protein (gp14). We tentatively identify the heptanucleotide
slippery sequence as “TAAAAAA.” Current work is ongoing to identify more P. larvae
phage protein functions and provide a comparative genomic analysis of P. larvae
phages.

Data availability. The GenBank accession numbers for the four complete Paeniba-

cillus larvae phage genome sequences are listed in Table 1.
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TABLE 1 GenBank accession numbers and genome assembly results for Paenibacillus
larvae phages

Phage
name

GenBank
accession no.

Isolation
source

Genome assembly results

Genome
length (bp)

Avg
coverage (�)

GC content
(%)

DTR sequence
length (bp)

Halcyone MH460827 Soil 55,560 83 48.6 377
Heath MH460826 Soil 55,560 222 48.6 377
Scottie MH460825 Hand cream 55,990 173 48.6 377
Unity MH460824 Beehive 50,316 320 49.1 378
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